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ON THE STRUGTURE OF TILT
GRAIN BOUNDARIES IN CUBIC METALS
I. SYMMETRICAL TILT BOUNDARIES

By A. P. SurTtoNt AND V. VITEK
Department of Materials Science and Engineering, and the Laboratory for Research
on the Structure of Matter, University of Pennsylvania, Philadelphia, Pennsylvania 19104, U.S.A.
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An atomistic study of tilt grain boundary structures in f.c.c. metals has been made. The
principal aim of this study is to understand the structure of long-period (‘ general’) tilt
boundaries. Boundaries for which X < 491 were considered, where 2 is the reciprocal
density of coincidence sites. The work is presented in three parts. In this paper three
series of atomistic studies of symmetrical tilt boundaries in aluminium and copper are
reported. One of the main objectives is to determine whether the stress fields of localized
grain boundary dislocations exist in boundaries deviated far from any short-period
boundary orientations. On the basis of the results of these studies, a new structural
classification of grain boundaries is introduced. Certain boundaries are found to be the
fundamental structural eléments of other boundaries nearby in the misorientation
range. Boundaries that consist of contiguous sequences of one type of fundamental
structural elements are called favoured; all other boundaries are called non-favoured. Itis
found that favoured boundaries are not always associated with the lowest possible
values of 2’ and that the same boundaries are not necessarily favoured in all metals with
the same crystal structure. With use of the pair interactions to calculate the atomic level
stress tensor, the hydrostatic stress fields of the boundaries are displayed. In all cases
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2 A.P.SUTTON AND V. VITEK

considered the stress fields of distinct, localized intrinsic grain boundary dislocations
were found in non-favoured boundaries. The concept of continuity of boundary
structure with misorientation is introduced. It is shown that continuity of boundary
structure requires unique boundary structures at all misorientations. With use of this
concept it is demonstrated how one can predict the atomic structure and stress field of
any non-favoured boundary between two known, successive favoured boundaries. It is
also found that an isolated discontinuous change in boundary structure between two
successive favoured boundaries may exist, depending on their translation states. Some
earlier atomistic studies of tilt boundaries in f.c.c. and b.c.c. metals are reinterpreted
in the light of this work.

1. INTRODUCTION

In the past, grain boundaries have been classified as ‘special’ or ‘general’. The difference
between special and general boundaries has never been defined clearly from a structural view-
point. Instead, special boundaries acquired their distinction because of their exceptional pro-
perties (for a review see Pumphrey 1976). For example, special boundaries frequently have
relatively low energy (for a review see Goodhew 1980) and they also appear to have higher
mobilities than general boundaries, at least when impurities are present in solution (Aust &
Rutter 1959). It was always found that special boundaries were associated with coincidence site
lattices (c.s.ls) possessing a low reciprocal density, X, of coincidence sites (see for example
Kronberg & Wilson 1949). Furthermore, the planes of these boundaries are parallel to low-index
planes of the corresponding c.s.l., and therefore the structures of special boundaries are two-
dimensionally periodic with relatively small repeat cells. The converse has also been inferred
many times in the literature, i.e. a boundary with a relatively small repeat cell is special. Thus,
boundaries associated with a relatively high planar coincidence site density, I', are identified as
special (see for example Brandon ¢t al. 1964). However, Goodhew (1980) has pointed out that in
faceting experiments facets associated with the highest available values of I" are observed only
occasionally.

A central problem in studies of the structure of high-angle grain boundaries that has attracted
much theoretical and experimental work is the determination of their dislocation structure. The
Frank-Bilby equation (Frank 1950, Bilby 1955) relates the net Burgers vector, B, of interfacial
dislocations crossing any vector p in the interface and the lattice deformations §; and S, converting
the reference lattice into real lattices 1 and 2 respectively:

B = ($3'-S1)p. (1)

In this equation B is defined in the reference lattice. Christian & Crocker (1980) have pointed
out that B is not defined uniquely by equation (1) because S, and S, may be replaced by U,S,;
and U,S, where U, and U, are homogeneous lattice-invariant deformations represented by uni-
modular matrices with integral elements. Lattice symmetry operations form a subset of U, but
more generally U, and U, have the effect of shearing the two crystal lattices ‘into themselves’
resulting in no change in either them or the interface. However, B is affected by alternative
choices of §; and S, and there is an infinite number of such descriptions for a given interface and
reference lattice. Henceforth, this multiplicity will be referred to as the multiplicity of the first
kind. For example, the plane of any symmetrical tilt boundary may be described as the invariant
plane of a simple shear in the crystal lattice (Christian 1975). In O-latticef terms the O-point

t If both real lattices are allowed to interpenetrate throughout all space, the O-lattice is defined by Bollmann
(19770) as the set of points that have the same internal unit cell coordinates with respect to lattices 1 and 2.
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GRAIN BOUNDARY STRUCTURE IN METALS. I 3

lattice then becomes an O-plane lattice with exact lattice fit in the boundary plane (Bollmann
1970). For this description B = 0 so that any symmetrical tilt boundary may be described as
dislocation free. But if one regards the symmetrical tilt boundary as being obtained by pure
rotations + 16 about the axis ¢ in the crystal lattice, to give a total misorientation of §, one obtains
B = 25in (40)p A t. The first description can assume a physical significance when, for example,
the boundary migrates by a shear mechanism as in deformation twinning. The second is the
familiar representation by equal and opposite rotations of the median lattice about the tilt axis.

A second kind of multiplicity in the dislocation description of an interface is the choice of
reference structure for defining S, and S,. The atomic structure of the interface is independent of
the choice of reference structure and in this respect the choice of reference structure is arbitrary.
However, B is dependent on this choice and, furthermore, Bollmann (1970) has demonstrated
that B is ‘quantized’ into discrete grain boundary dislocations (g.b.ds) whose Burgers vectors
are also dependent on the choice of reference structure. The most commonly used reference
structures for grain boundaries in cubic materials are the ideal lattice and ‘special’ boundaries.
The Burgers vectors of g.b.ds based on the ideal lattice are those of lattice dislocations, as in Read
& Shockley (1950). As the misorientation increases the separation of lattice dislocations becomes
so small that they become indistinguishable and it is then considered more physically meaningful
to use a ‘special’ boundary as a reference structure. The Burgers vectors of g.b.ds based on a
special boundary reference structure are vectors of the d.s.c. lattice} associated with the c.s.l. to
which the special boundary belongs (Bollmann 1970). The total dislocation content of a high-
angle boundary is then divided into the primary (lattice) dislocations comprising the special
boundary reference structure and the secondary (d.s.c.) dislocations accommodating the angular
deviation from this reference structure. Alternatively, the special boundary reference structure
may sometimes be regarded as the invariant plane of a simple shear and therefore dislocation
free. A principal goal of many geometrical analyses of grain boundary structure has been the
determination of a choice of reference structure that provides the most physically realistic
description of the g.b.d. structure of a given boundary. Bollmann (1970) claims that such a
reference structure does indeed exist and is given by the condition that the unit cell of the corre-
sponding O-lattice is maximized. As pointed out by Christian & Crocker (1980) this condition
requires further restrictions for symmetrical tilt boundaries to eliminate unrealistic shear descrip-
tions for high-2'boundaries, which lead to dislocation-free descriptions of the boundary structure.

The infinite number of dislocation descriptions, due to the multiplicity of the first kind, apply
to a given boundary and reference structure. All of these descriptions apply regardless of the
atomic structure of the boundary and hence there does not exist a preferred choice of §, and S,
as far as the atomic structure is concerned. However, certain properties of the boundary such as
its migration by a shear mechanism or a diffusion mechanism may be more readily explained by
invoking particular descriptions of the lattice deformation. The multiplicity of dislocation
descriptions of the second kind applies to a given boundary and prescription for §, and S,, and it
stems from the infinite choice of possible reference structures. As described in §3, for a given
atomic structure and interatomic potential itis possible to calculate the stress field of the boundary
at the atomic level. Using this stress field one can select the most physically appropriate reference
structure for the boundary in question. The most appropriate reference structure is that which
exists between the g.b.d. stress fields. Thus all the dislocation character of the stress field of the
boundary is accounted for.

1 The d.s.c. lattice may be defined as the set of difference vectors between lattice vectors of real lattices 1 and 2.
1-2
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4 A.P.SUTTON AND V. VITEK

In recent years, Gleiter and co-workers have claimed that the secondary g.b.d. description of
high-angle grain boundary structure is of limited physical significance because the cores of these
dislocations are delocalized at misorientations beyond a few degrees from special boundaries
(Gleiter 19774, b; Pumphrey et al. 1977). While it has been demonstrated that the theoretical
arguments supporting this claim are fallacious (Vitek ¢t al. 1979; Sutton & Vitek 19804), the
transmission electron microscope observations remain controversial (see for example Pumphrey
& Goodhew 1979; Pond & Smith 1977). Until now little was known about the structure of
high-X grain boundaries, partly because most atomistic studies have considered only ‘special’
boundaries (for a review see Vitek ez al. 1980a). In this paper we present the results of three
series of atomistic calculations of the structures of symmetrical tilt boundaries in aluminium
and copper. In each series of calculations we have systematically varied the misorientation
and included some high-2' (X' < 491) boundaries. We are thus able to follow the change in
boundary structure with misorientation from one ‘special’ boundary to the next. The most
significant result is that certain special boundaries, which we call favoured boundaries, are
found to be the fundamental structural elements, called units, of longer-period tilt
boundaries, which we call non-favoured boundaries. We have used the term favoured
rather than special because some low-Z boundaries are found to be non-favoured, while
normally they would be classified as special. Itis emphasized that this classification of boundaries
is purely according to their structure and not their energy. A favoured boundary is composed of
a contiguous sequence of units of only one type and those units are then defined to be in their ideal
(undistorted) state. A non-favoured boundary in the misorientation range between two successive
favoured boundaries is composed of well defined mixtures of two different units, of which at least
one is the unit of one of these favoured boundaries. The favoured boundary units composing a
non-favoured boundary are inevitably distorted. However, the relaxation is always such as to
minimize these distortions and we believe it is this that gives favoured boundaries their structural
significance. The local misorientation across a non-favoured boundary varies because each unit
relaxes towards its ideal misorientation. The significant local misorientation difference between
different adjacent units produces an incompatibility between them, which is the source of a
g.b.d. stress field. Since the corresponding g.b.d. accommodates a local misorientation difference
it may be regarded as a secondary g.b.d. The most physically appropriate choice of reference
structure is then the favoured boundary represented by the majority units because such in-
compatibilities do not exist in this boundary. A favoured boundary is therefore free of secondary
g.b.ds and may be regarded as free of all dislocations if it can be described as the invariant plane
of a simple shear. Alternatively, a favoured boundary may be described as an array of uniformly
and closely spaced primary, lattice dislocations accommodating the rotation from the ideal
lattice. Thus although a favoured symmetrical tilt boundary may be described as dislocation
free it is not locally stress free, as will be apparent in the stress fields shown below. Following
Hirth & Balluffi (1973) we call these secondary dislocations intrinsic g.b.ds because they are an
inseparable part of the equilibrium structure of the boundary and therefore they do not produce
long-range stress fields. They are in contrast to extrinsic g.b.ds, which originate from lattice
dislocations entering the boundary or from Bardeen—Herring sources in the boundary. This
distinction is based on the premise that grain boundaries are free of long range stresses at
equilibrium, which cannot be maintained always.

The structural unit model of Bishop & Chalmers (1968, 1971) is similar to the description of
grain boundary structure presented here. This structural unit model is based on the crystallo-


http://rsta.royalsocietypublishing.org/

THE ROYAL A
SOCIETY :

PHILOSOPHICAL
TRANSACTIONS
OF

4 |\

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

GRAIN BOUNDARY STRUCTURE IN METALS. I 5

graphic inevitability that a long-period boundary can always consist of strained units of shorter-
period boundaries. It is never known a priori which boundary units to choose, what their atomic
structures are and whether the same units compose boundaries nearby in the misorientation
range. In this work it is found that the answers to these questions are dependent on the inter-
atomic potential.

Throughout this study attention is focused on the following questions.

1. Are there any geometrical criteria for predicting which boundaries are favoured? Are the
same boundaries favoured in all metals with the same crystal structure? Do favoured boundaries
always have exceptional properties such as low energy?

2. What is the atomic structure of a non-favoured boundary with a misorientation that is far
from that of any favoured boundary? To what extent can the structure be regarded as ‘ arbitrary’
or ‘disordered’? Do the intrinsic g.b.ds, based on the appropriate favoured boundary reference
structure, retain any physical significance at such large deviations?

3. Consider two adjacent favoured boundaries, i.e. two favoured boundaries sharing the same
rotation axis and such that no other favoured boundary exists in the misorientation range
between them. How is the transition accomplished in the intervening misorientation range in
terms of (i) the two sets of d.s.c. dislocations with their different Burgers vectors and spacings,
and (ii) the atomic coordination? For example, the favoured boundaries may contain different
compact polyhedra (Vitek et al. 19804a). '

4. Which boundary properties can be used to determine favoured boundaries?

The work is presented in three parts. In this part I symmetrical tilt boundaries are studied and
it is assumed that all boundaries considered are stable with respect to faceting. The following
part IT is concerned with the structure of asymmetrical tilt boundaries. A classification of tilt
boundaries in cubic crystals is developed in part IT that is based entirely on geometrical criteria;
it indicates which tilt boundaries may be related by either intrinsic secondary g.b.d. arrays or
faceting. The conclusions reached in parts I and IT are further generalized in the following part ITI
by introducing a new concept, which we call the decomposition lattice. The decomposition
lattice indicates ‘selection rules’ for favoured boundaries that, under certain conditions, enable
one to predict favoured boundaries. The results of several previous atomistic studies of relatively
long-period tilt boundaries in f.c.c. and b.c.c. metals are reinterpreted and they are all shown to
conform to the scheme propounded here. The applicability of the scheme to (001) twist boundary
structures, calculated by Bristowe & Crocker (1978), has also been demonstrated (Sutton 1982).
The extension of this development to mixed tilt and twist boundaries is discussed and an expla-
nation of the physical basis of ‘ plane-matching dislocations’ is offered in part III.

The three series of calculations of symmetrical tilt boundaries reported in this paper are as
follows:

(i) [110] tilt axis in aluminium, 0 < 6 < 50.48°,
(ii) [001] tilt axis in copper, 0 < 0 < 36.87°,

(iii) [111] tilt axis in aluminium, 0 < 6 < 60°,
where 6 is the angle of misorientation about the tilt axis. [001] Tilt boundaries in aluminium
were studied by Smith ez al. (1977) and some of the results of this paper are discussed in §7. Some
relevant results of the study of [001] and [110] tilt boundaries in b.c.c. metals by Vitek et al.
(1980b) are also discussed in §7. Preliminary reports of some aspects of this work have
appeared in Sutton & Vitek (19805), Sutton & Vitek (1981) and Sutton et al. (1981). All of the
calculated structures referred to in this work are also given by Sutton (1981).
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6 A.P.SUTTON AND V. VITEK

2. METHOD OF CALCULATION AND INTERATOMIC POTENTIALS

The method of calculating the structure of tilt grain boundaries is essentially the same as that
described by Pond & Vitek (1977), and more recently by Vitek et al. (1980a). A ‘block’, consisting
of the atomic coordinates of an unrelaxed f.c.c. bicrystal containing a selected coincidence
boundary, is first constructed in the computer. An equilibrium relaxed structure is found by
minimizing the total internal energy with respect to all atomic positions subject to the constraint
that the total volume of the block is constant. Relative displacements of whole layers parallel to
the boundary are permitted as well as individual atomic relaxation. Thus an overall relative
translation of the two grains parallel to the boundary may occur during the relaxation. A central
force pair interaction is assumed between atoms. The total energy of the system is given by the sum
of all pair interactions and a term that depends only on the average volume per atom in the block.
Atomistic calculations of defect structures have used one of two possible constraints on the block:
constant total volume or zero net hydrostatic pressure. Vitek et al. (1980a) have shown that
identical energies are obtained with these two methods provided the linear approximation to the
volume-dependent energy is assumed and a sufficiently large block is used. The only difference
in the calculated structures is the presence of a long-range, elastic, compressive strain in the block
obtained at constant total volume; the atomic configurations are otherwise identical. In addition,
within the linear approximation to the volume-dependent energy the total energy is independent
of any expansion of the block. It is therefore necessary to use a nonlinear approximation to the
volume-dependent energy to define the expansion at a boundary uniquely.

Owing to the high-index nature of the boundary planes considered in this work, it was
desirable to introduce a scheme of selective relaxation. This scheme is similar to the ‘indicator
method’, devised originally for calculations of the core structures of dislocations (see for example
Vitek & Yamaguchi 1981). The selective relaxation scheme used in this work was found to
increase the speed of relaxation by as much as a factor of 30. A detailed description of the method
has been given by Sutton (1981).

Two pair potentials have been used in this work. The potential for aluminium, constructed by
Dagens e al. (1975) in the framework of pseudopotential theory, has been used extensively
in previous studies of grain boundary structure (see references in Vitek et al. 19804). Pond &
Vitek (1977) found excellent agreement between translation vectors of several tilt boundaries
in the X' = 3 coincidence system calculated with this aluminium potential and experimentally
determined values in aluminium obtained by an electron diffraction technique. In view
of this, and the very good agreement with phonon dispersion curves (Dagens et al. 1975), and
reasonable values of the stacking fault energy (Vitek 1975) it is felt that this potential accurately
describes atomic interactions in aluminium (see also Taylor 1981, Jacucci & Taylor 1981,
Jacucci et al. 1981). The potential shows long-range oscillations and it is therefore necessary
to employ a cut-off radius, r,, during atomistic relaxations. Pond & Vitek (1977), studied
the effect of different choices of 7, and concluded that the atomic configuration of a boundary
changed by less than 5 9% when 7, > 1.6a, where a is the lattice parameter, but the calculated
energies converged much more slowly. In this work we follow Pond & Vitek (1977) and use
7o = 1.6a, but we do not present boundary energies calculated with this potential. An empirical
pair potential for copper, constructed by Crocker ¢f al. (1980), has also been used in this work.
This potential has been used in studies of twist boundaries by Bristowe & Crocker (1978) and
Ingle & Crocker (1980), and symmetrical tilt boundaries by Crocker & Faridi (1980). The
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GRAIN BOUNDARY STRUCTURE IN METALS. I 7

validity of the pair potential approximation in copper is not as easily justified as it is in
aluminium. Furthermore, the vacancy formation energy was used in the construction of this
potential, and Jacucci ¢t al. (1981) have shown that thisis an incorrect procedure in metals with
a high electron density. We therefore regard this potential as a model potential, rather than a
potential that accurately represents atomic interactions in copper.

There are several significant differences between the forms of the potentials for aluminium
and copper. The potential for copper terminates at third nearest neighbour separation in the ideal
crystal (r, = 1.2254), and rises more steeply than the potential for aluminium in the repulsive
side. Whereas the potential for copper is negative at first nearest neighbour separation, the
potential for aluminium is positive. Itis hoped that by using such substantially different potentials
the general conclusions of this study will be applicable to boundary structures in a broader range
of metals. Owing to the absence of long-range oscillationsin the potential for copper, the boundary
energies could be calculated reliably, although, again, we do not expect to obtain agreement with
experimental measurements of boundary energies in copper.

3. METHODS OF INTERPRETING THE RESULTS

A conventional method of presenting the calculated structure of a tilt boundary is to plot the
atomic positions in projection along the tilt axis (see for example Smith ez al. 1977). Atoms on
different atomic planes along one period of the tilt axis are distinguished by different symbols
(e.g. triangles, crosses, squares). If a rigid body translation of one grain with respect to the other
parallel to the tilt axis exists then twice as many symbols are required. Of central importance in
this work is the physical significance of the secondary dislocation description of a non-favoured
boundary, based on the appropriate favoured boundary reference structure. The above plots
may be used qualitatively to identify edge dislocations by looking for terminations of lattice
planes parallel to the favoured boundary, but a more objective method has been used based on
the hydrostatic stress field of the boundary. In an inhomogeneously deformed lattice the stress
tensor o%4 at ion [ can be defined by the relation

1 d¢(|' 1) o v (2)

O'fxﬁ 2sz|,u| d|rt] Ta T4 s

where ¥ is the relative position of ions / and ', ¢(r) is the central force pair potential and V'is
the local atomic volume at the ion /. The summation is taken over all interacting ions, and all
quantities are evaluated in the deformed lattice. This expression may be derived by considering
the change in energy per unit volume, 8, when an infinitesimal homogeneous strain, d¢,, is
applied to the inhomogeneously deformed lattice. To first order, 3E is given by

BE = 8¢,y 3 ol | (3)

Itisimportant to note that o}z is defined without reference to any idealized state. The local stress
tensor, equation (2), has been used extensively in atomistic studies of dislocation core structures
(see for example Basinski ef al. 1971, Duesbery ¢t al. 1973) and recently in the identification and
classification of structural defects in amorphous solids (Egami et al. 1980). The hydrostatic stress

' is given by
1 de(|r*
= %- Ea o'gm' =._T/_. lrlll q;(llrulll). (4)
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8 A.P.SUTTON AND V. VITEK

Thus, when the hydrostatic stress is evaluated in the ideal lattice, one obtains the negative of the
Cauchy pressure. In a hydrostatic stress field map the hydrostatic stress at each atomic site is
represented by an arrow, centred on that site, with length proportional to the magnitude of the
local hydrostatic stress, the direction of which indicates its sign. Arrows pointing to the right
indicate hydrostatic compression whereas arrows pointing to the left indicate hydrostatic tension.
Because our interest lies in the perturbation caused by the boundary the Cauchy pressure is
added to each ' and this reduced hydrostatic stress is represented in the maps. The maximum
hydrostatic stresses in these maps are of the order of the theoretical shear strength. The arrow
length magnification varies from one map to another for normalization reasons, and therefore
quantitative comparisons of different stress field maps cannot be made. An edge dislocation in
the ideal lattice can be readily identified by its characteristic hydrostatic stress field, which
consists of an alternation from compression to tension above and below its slip plane respectively.
But the interpretation of the hydrostatic stress field of a symmetrical tilt boundary is not unique
owing to the multiplicity of dislocation descriptions. In this work the dislocation description of a
non-favoured boundary is always in terms of secondary dislocations accommodating the mis-
orientation from the appropriate favoured boundary, as discussed in § 1. The total stress field of a
non-favoured boundary is therefore interpreted as the superposition of the fields of these second-
ary dislocations and the field of the appropriate favoured boundary.

The definition of the local atomic volume, V7 is not unique. In this work we have taken
V! = (4n) (r*)3 where r* is half the smallest interatomic separation from the set of |r¥|. A more
satisfactory definition is to consider a weighted average of all members of the set of | |, as shown
by Sutton (1981) and Sutton & Vitek (1982). The definition of V' used here tends to exaggerate
compressive stresses but the fields calculated with the two different definitions of V! are quali-
tatively very similar.

An overall compressive stress exists in the relaxed blocks of atoms in this work. This is because
the relaxations have been carried out at constant total volume. Hence, hydrostatic compression
predominates over hydrostatic tension in the stress field maps. However, this is irrelevant to
identifying cores of edge dislocations. They occur at the regions where there is a sharp transition
from maximum hydrostatic compression to relative tension. By ‘relative tension’ we mean a
large decrease in compression that may or may not actually be tension.

4. [110] SYMMETRICAL TILT BOUNDARIES IN ALUMINIUM
4.1. Introduction

Three of the boundary structures studied here were calculated before: X' = 11 (113), and
X = 9(114), structures may be found in Pond ez al. (1979) and X = 27(115), structure
in Pond et al. (1978). The X = 11 boundary structure is composed entirely of capped
trigonal prisms, whereas tetrahedra are the only compact polyhedra in the X' = 27 boundary
structure. A systematic series of calculations of boundaries in the range 31.69 < 6 < 50.48° was
carried out to reveal how the change in atomic coordination occurs and to investigate the
stress fields of the intervening boundaries. The results of this study are reported in §4.2 and
an analysis follows in §4.3. Section 4.4 contains the results and analysis of the study of the
range 0 < 0 < 31.59°.
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4.2. Results for the range 31.59 < 6 < 50.48°

The boundaries selected in this misorientation range are listed in table 1. The boundary
planes with respect to the upper and lower grains are shown in the first column.{ Corresponding
angles of misorientation and X values are given in columns two and three. Figure 1a shows the
relaxed structure of X = 27 (115); in projection along the [110] tilt axis. The triangles and
crosses distinguish between the (220) planes in each crystal period along the tilt axis, and the
upper and lower grain coordinate systems are shown in the figure. The shapes drawn into
figure 1aindicate the atomic groups constituting one period of the boundary. In each period the

TaBLE 1

boundary plane 6/deg b centred period vector structure
(115),/(TT5), 31.59 27 yes 1552, A.A|
(3,3, 14),/(3, 3, 14), 33.72 107 no (7731, AAAAAB|
(229),/(229), 34.89 89 no 1[994], AAAB]
(5, 5, 21),/(5, 5, 21), 37.22 491 yes 1[21, 21, T0], ABABA.ABABA|
(1,1,4),/d,T,4), 38.94 9 no [221], AB|
(5, 5,19),/(5, 5, 19), 40.83 a1 yes 1[19, 19, T0], BABAB.BABAB|
(3, 3,11),/(3, 3, 11), 42.18 139 yes i[11, 11, 8], BBA.BBA|
(227),/(227), 44.00 57 no 1[774], BBBA|
(113),/(113), 50.48 11 yes 1[332], B.B|

two triangles, marked t, correspond to tetrahedra seen in projection along an edge. Separating
each pair of tetrahedra there are five-sided configurations, marked p, which appear pentagonal
in projection although they are not planar. For brevity we call them ‘irregular pentagons’. It is
important to note that the atomic structure of each half period of the boundary is identical
except that atoms represented by triangles in one half correspond to atoms represented by crosses
in the other half, and vice versa. Equivalent atoms in each half period are therefore relatively
displaced along the tilt axis by 1[110]. We define the repeat cell of a tilt boundary as the rect-
angular cell bounded by vectors parallel and perpendicular to the tilt axis with magnitudes
equal to the period of the boundary in those two directions. For example, the repeat cell of the
2 = 27(115), boundary is defined by the vectors 3[110] and }[552],. The X' = 27 c.s.l. unit cell is
base-centred orthorhombic and the (115), symmetrical tilt boundary is parallel to one of the
base-centering faces. Hence the repeat cell of this boundary contains two c.s.l. sites: one shared
by the four corners and the second at the centre of the cell. No relaxation can destroy the trans-
lational symmetry associated with the c.s.l. in the boundary plane and this is the reason for the
equivalence of atoms in each half period. The term centred boundary’ is used here to connote
any tilt boundary that has more than one c.s.l. site in a repeat cell of the boundary. Therefore
2 = 27 (115),iscentred. However, itis only in {001) and {110) tilt boundaries that the additional
c.s.l. sites are at the centre of the repeat cell. For example, in ‘centred’ [111] tilt boundaries the
additional sites are at 1[111] and 2[111] along the tilt axis. '

Let the repeat cell of a boundary contain s c.s.l. sites. We call a cell that is associated with
only one c.s.1. site a primitive cell of the boundary. The area of a primitive cell is thus 1/s of the

1 The suffixes 1 and 2 signify that the plane, or vector, is expressed in the upper or lower grain coordinate
system respectively. If no suffix is used then the plane, or vector, has the same components in both coordinate

systems, e.g. (220).

2 Vol. 309. A
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10 A.P.SUTTON AND V. VITEK

area of a repeat cell. It is convenient, as seen below, to choose the primitive cell bounded by the
shortest crystal lattice vector along the tilt axis, and the vector perpendicular to the tilt axis with
length 1/s times the period of the boundary in that direction. Henceforth this cell will be referred
to as the primitive cell of the boundary. Thus the primitive cell of the X' = 27 (115), boundary is

(@) » + a

a +

"poil, s . s

+ A +
+ A +
+ Py +
a + A
1 + A
2'[110]2 +
+ Fay +
+ A +
(6)
—_— — —
—— — —
— —— —

Ficure 1. (a) Relaxed structure of £ = 27 (115),, 31.59°/[110] boundary in aluminium; p and t denote irregular
pentagons and tetrahedra respectively. (b) Corresponding hydrostatic stress field map; arrows pointing to the
right/left indicate hydrostatic compression/tension. The middle of each arrow corresponds to an atomic site.

bounded by }[552]; and }[110]. We now introduce the concept of a boundary unit. This is a
three-dimensional object containing atoms that coincides with a primitive cell in the geometrical
boundary plane and, in principle, is of infinite length normal to the boundary plane owing to the
absence of translational symmetry in that direction in a bicrystal. For the present purposes it is
sufficient to include the smallest possible number of atoms needed to identify the corresponding
boundary structure unambiguously. By including more atoms one is only appending relatively
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GRAIN BOUNDARY STRUCTURE IN METALS. I 11

undistorted crystal. The size and shape of a boundary unit in the geometrical boundary plane are
prescribed by the primitive cell of the boundary, and are therefore determined entirely by the
boundary crystallography. In general, the atomic structure depicted within the unit is expected
to vary with the interatomic potential. The atomic structures of all boundary units are identical,
but equivalent atoms in adjacent units of a centred boundary are relatively displaced by some
multiple of 1/s of the shortest crystal vector along the tilt axis.

We define a unit, called A, of the 2 = 27 (115); boundary structure shown in figure 1a as
consisting of one tetrahedron and one of its adjoining irregular pentagons. This unit is bounded
by [552]; and }[110] as required, and contains sufficient atoms to typify the boundary structure.
The boundary structure may be represented by |[A.A| (as shown in column 6 of table 1), where
the bars denote one period of the boundary perpendicular to the tilt axis, and the dot signifies that
equivalent atoms in adjacent units are relatively displaced by 1[110] along the tilt axis. [A. A is
called the unit representation of this boundary structure. For the same interatomic potential and
tilt axis, units of boundaries with different misorientations may be distinguished by the vectors
bounding the primitive cells perpendicular to the tilt axis. It may be said that these vectors
characterize the boundary units. Thus }[552]; characterizes the unit of the X = 27 (115),
boundary in this series of [110] tilt boundaries.

Figure 14 shows the hydrostatic stress ficld map of the X' = 27 (115), boundary. The equi-
valence of atoms in each half period is clearly revealed in figure 15 because exactly the same
hydrostatic stress exists at equivalent sites. For example, compare the hydrostatic stresses at
corresponding apices of the two tetrahedra shown as triangles. From Frank’s formula we see that
each A unit may be associated with a [001] lattice dislocation. However, since the spacing of
these dislocations is only %|[552],] it is perhaps more meaningful to describe the boundary as
dislocation free, corresponding to the simple shear description of the relation between the
crystal lattices.

It can be shown (Sutton 1981) that all (khk) [110] symmetrical tilt boundaries in f.c.c. crystals
are centred provided both % and % are odd. Figure 2 a shows the relaxed structure of the &' = 11
(113), boundary. Two capped trigonal prisms (c.t.ps) composing one period of this boundary
are outlined by broken lines. This boundary is centred and hence the c.t.ps are identical except
for a relative displacement of $[110] along the tilt axis. We may conveniently define a unit, B,
of this boundary as one c.t.p. Each B unit is then bounded by 4[110] and }[332] in the boundary
plane as required, and the structure of the boundary may be represented by |B.B|. B units are
characterized by 1[332]. The hydrostatic stress field map of this boundary is shown in figure 24,
Again we can formally associate a [001] lattice dislocation with each B unit, and it is noted that
the core structure of each dislocation has changed from an A unit to a B unit. However, since the
spacing of these dislocations is only ¢a. 1.173q it is again preferable to describe the bicrystal as a
simple shear on the boundary plane.

The relaxed structure of the X' = 107 (8, 3, 14), boundary is shown in figure 34. Each period
of this boundary is composed of five slightly distorted A units, shown by full lines, and one
slightly distorted B unit, shown by broken lines. Hence this boundary structure may be repre-
sented by |[AAAAAB|, as indicated in table 1. We call the vector bounding the repeat cell of a
boundary that is perpendicular to the tilt axis the period vector. In this case the period vector is
[773];. The decomposition of the structure of each period of this boundary into five A units and
one B unit may be expressed as a vectorial decomposition of the period vector:

[773], = 2[552], + 1[332],.
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12 A.P.SUTTON AND V. VITEK

This equation reflects the filling of the (3, 3, 14), boundary period by five A units and one B unit
because of our choice of primitive cells with sides parallel and perpendicular to the tilt axis.
However, in §6 it is shown that different boundary units cannot be combined in this manner if
they have incompatible translation states. Within each period of the X' = 107 boundary, the
local rotation of (115), and (115), planes, to make them parallel to the boundary plane at A

(a) + A + A + A +
+ A + A + A +
A + A + A + A
S + a + A + A
+ : S : +
+ A + | P A +
1 ///)r\\\ II //’ l\\\\
a + 4\(\ 1' /)\<\ ! e + A
~ \ ~
+ N + VT 7 N +
-~ -~
+ A v )2 + A +
A + A + Py + A
A + A + A + A
+ A + A + A +
+ A + A + A +
(6 — — — — — — —
—_— —_— —_— — — —_— —
e e —_— —_—
- - ~ ~ ~ - -
! =< i \\‘\
/ e ! =)
e - ' -~
:I// ! \\\.'4’// P>
T~o : X N !
\\ L \\ \\\\II/’
[Pe (WP
- - A » - - -
—_— —_— —_— ——
—_— —_— —_— —_— —_— — —_—

Ficure 2. (a) Relaxed structure of 2 = 11 (113),, 50.48°/[110] boundary in aluminium; the two capped trigonal
prisms in one boundary period are indicated by broken lines. (5) Corresponding hydrostatic stress field map.

— hd - — - — — - — -
- ...— —_ —_ - — — - - — ..—. —-—. - — —.—.—. — e

— — T — —_— —_— — i — — — - 3 —_— —_—
- . - Tou — - - - = — - - - T — -

- - W —— — — - - — — — - - . - —_—. — —_—
i -y e g U T i T S e iy

- - AZ T — T - - — - - T - - e -

Ficure 3. (a) Relaxed structure of £ = 107 (3, 3, 14),, 33.72°/[110] boundary in aluminium; the five A units
and one B unit in one period of the boundary are indicated by full and broken lines respectively. (b) Corre-
sponding hydrostatic stress field map.
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GRAIN BOUNDARY STRUCTURE IN METALS. I 13

units, creates an incompatability between A and B units perpendicular to the boundary plane.
This incompatability results in an intrinsic edge dislocation at each B unit with Burgers vector
equal to 5%[115],. This Burgers vector can be verified by using Frank’s formula since the dis-
locations are spaced by |[773]] and the angular deviation from the X' = 27 (115), misorientation
is arccos (2887,/2889). The creation of each ;% [115], dislocation may be viewed as a consequence
of the minimization of the deviations of the local misorientation across the boundary at each unit
from the ideal state of the unit. The physical significance of this secondary g.b.d. description is
determined by the degree to which the dislocations are localized and distinguishable, which in
turn depends on the existence of local misorientation differences between A and B units. That the
secondary g.b.ds are indeed localized is evidenced by the hydrostatic stress field map, figure 34.
The stress field consists of a superposition of the field of the X' = 27 (115), boundary (figure 1)
and the field of the array of uniformly spaced 5%[115]; g.b.ds. Between successive B units (shown
by dashed lines) there is a gradual increase in overall compression to a maximum at each B unit
followed by an abrupt transition to relative tension. This indicates that an edge dislocation is
indeed located at each B unit, and the sharpness of the transition demonstrates that each of these
dislocations is well localized and distinct.

(a)
a A + A A 4 A t o8 8+ A 4t
+++AA ++AA ++ AA ++AA ++ AA++ AA
A t, 4 + A t, 4 + T A8 Ty A +
A + T A + F A B ++ A + T A - sl +
+ %\L + A A 4 + A_A-trf‘r LA - . A
+A A_{(/i\;\ il LN il 2NN A “< " A 4
A AR T T A T—_L\ vay T oL A T = I ~t
oy Ay AAA++ AEH‘++AAA++"TT—_V:-AA
s, Ty AA+++ ALt T A T e Tt T A T
+ A + + A + A + + A + A ++ A
(b) _ 3 3 - , - -

- — -_. "’——-—>—. -—o—_. - -_. - -——»”_———-“_‘ - ~__ "—-_———b_’—.—.
- - . . - . — — - . — —
Rl - T T - = -

- — - ———>-—> _’—— - — *\l%-—h —.—— - — - -_>—> —’—>
\

Ficure 4. (a) Relaxed structure of X = 89 (229),, 34.89°/[110] boundary in aluminium. The two B units,
shown by broken lines, are separated by one period of the boundary. Full lines show (115), and (115), planes
entering and terminating in the boundary at B units. (b) Corresponding hydrostatic stress field map.

Figures 4a, b show the relaxed structure and hydrostatic stress field map of the 2' = 89 (229),
boundary. B units, indicated by broken lines, are separated by one period of the boundary. Three
A units may be seen between each pair of B units and hence the unit representation of this
boundary is |[AAAB|. The period vector, 3[994];, undergoes the following decomposition:

3[994], = (552, + 1[382];.
Full lines in figure 44 show (115); and (115), planes entering the boundary in pairs at B units
and terminating parallel to the boundary at the next B unit. This indicates that each B unit is
located at the core of an edge dislocation with Burgers vector magnitude equal to twice the
{115} interplanar spacing. Moreover, since the direction of the Burgers vector is perpendicular
to (115), and (115), the Burgers vector is [ 115];. This Burgers vector is twice a primitive d.s.c.
dislocation of the X' = 27 coincidence system. Since the angle of misorientation of the X' = 89
boundary is greater than that of the 2 = 27 boundary we have chosen the positive sign for the
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14 A.P.SUTTON AND V. VITEK

Burgers vector. The structure of the X' = 89 (229), boundary may therefore be described as that
of the ' = 27 (115), boundary with a superimposed array of uniformly spaced 2%[115], intrinsic
secondary g.b.ds whose cores correspond to units from the X = 11(113); boundary. This
description is consistent with figure 45 where each B unit, identified by broken lines, coincides
with a sharp transition from maximum compression to relative tension. Furthermore, the
compressive side of the B unit corresponds to the side at which two {115} planes terminate.

Figures 5a, b show the relaxed structure and hydrostatic stress field map of the X' = 491
(5, 5,21), boundary. This boundary is centred and each half period has the structure BAABA
so that the boundary structure is represented by |BAABA.BAABA|. The period vector is
4[21,21,10], and the decomposition of each half of this vector is as follows:

1[21,21,10], = [552], +£[332];.

4+, + A D 4 a4 a 4+ + . a + A + a8t +
A t A + a A A + + A
+ a4+ + ta + tan +"’AAA++AAA+++AA +
Tl +"‘A~ > W
B Tty K e O N T e e
+ A AT ¥ A AT+ - e L A L S L A
LA S At 4T a8, ++AA + 88T+ AT,y Al t
(b) -~ . - L= - L - L =L - - .
s e __.—*"'_ e - o _H—o - - T e e __.-—- -
- — ‘((/l—>->__ - -\’(|>~> -t/—>—> - - — - — ., -
—_ T e _.__—’_.:‘:7&» ""'._._\-‘—\)é T T . s T > T Tl

Ficure 5. (a) Relaxed structure of 2 = 491 (5, 5, 21),, 37.22°/[110] boundary in aluminium. B units (broken
lines) are separated alternately by two and one A units (full lines). Full lines outline (115), and (115), planes
entering and terminating in the boundary at B units. (8) Corresponding hydrostatic stress field map.

Pairs of (115); and (115), planes are shown in figure 54 entering and terminating in the boundary
at B units. In this case the B units are spaced by either one or two A units and thus the corre-
sponding %[115], dislocations are also non-uniformly spaced. In figure 54 the stress fields of
distinct edge dislocations are located at B units confirming that this secondary dislocation
description is physically significant.

The relaxed structure and hydrostatic stress field map of the X' = 9 (114); boundary are
shown in figures 64, 5. Each period of the boundary is composed of one A unit, shown by full
lines, and one B unit, shown by broken lines, and the boundary structure is therefore represented
by |AB|. The decomposition of the period vector is as follows:

[221], = }[552], +[332],.
Figure 64 indicates that an edge dislocation exists in each period of the boundary but since there
is an equal number of A and B units either of them may be regarded as the preserved reference
structure. Thus there is an ambiguity in the choice of the most suitable reference structure for
describing the secondary g.b.d. content of the boundary.

Figures 7a, b show the relaxed structure and hydrostatic stress field map of the X' = 411
(5,5,19), boundary. Each half period of this centred boundary is composed of two A units,
shown by full lines, and three B units, shown by dashed lines. The unit representation of this
boundary is |[ABABB. ABABB|. The decomposition of each half-period vector is as follows:

%[19, 193_1_0]1 = %[33511"'%[555]1'
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Ficure 6. (a) Relaxed structure of X' = 9 (114),, 38.94°/[110] boundary in aluminium. One A and one B unit,
composing one period of the boundary, are shown by full and broken lines respectively. (b) Corresponding
hydrostatic stress field map.
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Ficure 7. (a) Relaxed structure of £ = 411 (5, 5, 19),, 40.83°/[110] boundary in aluminium. Two A units and
three B units, composing one half period of the boundary, are shown by full and broken lines respectively.
Pairs of (113), and (113), planes are shown entering and terminating in the boundary at A units. (b) Corre-
sponding hydrostatic stress field map.
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16 A.P.SUTTON AND V. VITEK

Figure 74 indicates an array of non-uniformly spaced edge g.b.ds and since there are now more
B than A units, X = 11 (113), is the preserved reference structure. Pairs of (113), and (113),
planes are shown in figure 7« entering the boundary at A units and terminating at the next A
unit. Thus A units are now identified with the cores of —%[113], dislocations. Their Burgers
vectors are twice primitive d.s.c. vectors of the X' = 11 coincidence system.

Table 1 indicates that the remaining boundaries in this series are also composed of A and B
units with B units in the majority. In each case A units are located at the cores of —#[113],
dislocations preserving the X' = 11 (113), structure. As a final example, figures 84, 4 show the

— —_— —
i - — —— - — —— - —
— —
—_— —_ e —— I~ i —
= - > = - TS i
i NPt i\
—_— -— -— — S /)(\(\\ VT —
—_— — —_— — - = \-/—/>\é' — —_—
—_— _ > —_— v A —_— -
— - —_— — - — —_— - —_—

Ficure 8. (a) Relaxed structure of £ = 139 (8, 3, 11),, 42.18°/[170] boundary in aluminium. Two B units and
one A unit, composing one half period of the boundary, are shown by broken and full lines respectively. Pairs
of (113), and (118), planes are shown entering and terminating in the boundary at A units. (b) Corresponding
hydrostatic stress field map. '

relaxed structure and hydrostatic stress field map of X' = 139 (3, 3, 11),. Each half period of this
centred boundary is composed of two B units, shown by dashed lines, and one A unit, shown by
full lines. In figure 8a it is seen that pairs of (113), and (113), planes enter the boundary and
terminate at A units. These plane terminations correspond to the transition from maximum
compression to relative tension seen at A units in figure 854.

4.3. Analysis of the results for 31.59 < 6 < 50.48°
All of the calculated boundary structures are composed of A and B units. A and B units are
therefore the fundamental structural elements of all these boundary structures and hence
X = 27 (115), and X = 11 (113), are adjacent favoured boundaries. The hydrostatic stress field
maps reveal arrays of discrete, localized edge g.b.ds in all the calculated structures of the inter-
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GRAIN BOUNDARY STRUCTURE IN METALS. I 17

vening non-favoured boundaries. The source of each of those edge g.b.ds is the incompatibility,
normal to the boundary plane, created by the local misorientation differences across A and B
units. Since there are no incompatibilities between adjacent units in favoured boundaries they
are the appropriate reference structures for describing the intrinsic secondary g.b.d. structures of
intervening non-favoured boundaries. Between the 2' = 27 and X' = 9 orientations there are
more A than B units in the boundary structures and B units are then located at the cores of
#7[115], intrinsic d.s.c. dislocations preserving the X' = 27 (115), reference boundary structure.
Similarly, between the 2 = 9 and X' = 11 orientations there are more B than A units, and A units
are then located at the cores of —%[113], intrinsic d.s.c. dislocations preserving the X' = 11
(113), reference boundary structure. The 2’ = 9 (114), boundary is composed of an equal number
of A and B units. At this boundary both secondary g.b.d. descriptions apply, and the change
from one description to the other occurs at this boundary misorientation (6 = 38.94°). It is
remarkable that these secondary g.b.d. descriptions retain physical significance throughout their
respective misorientation ranges.

The unit of a favoured boundary is a fundamental structural element, i.e. it is not composed
of units from any other boundaries. If we choose to describe a favoured boundary as an array of
uniformly spaced lattice dislocations, accommodating the misorientation from the ideal lattice,
then each unit of a favoured boundary is associated with one lattice dislocation. Owing to their
small spacing, the stress fields of these lattice dislocations are no longer distinguishable and the
dislocation core structures differ in different favoured boundaries. Despite the limited physical
significance of this description it is interesting to note that a non-favoured boundary may be
regarded as an array of non-uniformly spaced lattice dislocations. The irregularities in the lattice
dislocation spacing are located at minority units and therefore coincide with secondary dis-
locations based on the majority unit reference structure. For example, consider X' = 89 (229),,
whose unit representation is [AAAB|. All four units in each period may be regarded as cores of
[001] lattice dislocations, the three A units with spacing |[552],| and the B unit with ‘spacing’
1|[332],]. Thus each B unit is an irregularity in the spacing of [001] lattice dislocations in this
boundary, where the regular spacing is defined as that of the 2" = 27 (115), favoured boundary,
i.e. 1|[652];]. On the other hand each B unit corresponds to the core of a $%[115], secondary
dislocation preserving the X' = 27 (115), favoured boundary structure. Secondary dislocations
based on some favoured boundary reference structure are therefore formally equivalent to
irregularities in the spacing of primary dislocations composing that favoured boundary (see also
Read & Shockley 1950, Balluffi 1980). Itis notedthat the Burgers vectors, 5% [115], and —%[113],
of the secondary dislocations preserving the above favoured boundaries are non-primitive d.s.c.
vectors. The primitive d.s.c. dislocations, 4%[115], and —4[113],, are associated with large steps
in the 2 = 27 (115), and X = 11 (113), boundaries, respectively. From the present calculations
it appears that it is always energetically more favourable to have an array of non-primitive
dislocations without steps, than itis to have an array of primitive dislocations with steps that may
possess alower elastic strain field energy. Presumably if the dislocation spacing, d, were sufficiently
large then primitive dislocations with steps would become energetically favourable. However,
King & Smith (1980) considered the case of an array of %[113], dislocations superimposed on
2 = 11 (113), boundary and estimated thatd > 100 nm is necessary for the formation of primitive
dislocations to be favourable. Considerably larger spacings are expected for an array of 55 [115],
dislocations superimposed on X' = 27 (115), boundary. Therefore, it is reasonable to assume that
the above primitive d.s.c. dislocations do not occur in boundariesin the range 31.59 < 6 < 50.48°,

3 Vol. g0o9. A
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18 A.P.SUTTON AND V. VITEK

This is important because if steps did occur in the boundary then it would no longer be composed
only of A and B units.

An important result of the calculations is that the boundary structures were found to vary
continuously with misorientation. Continuity of boundary structure between A and B favoured
boundaries entails that all boundaries are composed of A and B units and furthermore the
sequence of A and B units is strictly continuous with that of neighbouring boundaries in the
misorientation range. We shall explain what this means by considering a specific example.
Consider X' = 491 (5, 5,21),, which is a centred boundary; we know that each half period is
composed of three A units and two B units. However, suppose the sequence of A and B units in
this boundary were not known. It is only necessary to consider one sequence of five units because
of the periodicity in the boundary. Furthermore, a cyclic interchange of units throughout the
boundary only displaces the origin and does not change the boundary structure. Therefore,
there are 5!/(5 x 8! x 2!) = 2 non-equivalent sequences: (i) ...BAAAB... and (ii) ...BABAA....
We shall show that only the second possibility is continuous with neighbouring boundary
structures. For brevity, if each repeat sequence of units of a boundary consists of m A units and
n B units we call the boundary the m:n boundary. Thus 2 = 491 (5, 5, 21), is the 3: 2 boundary.
The 3:2 boundary has a misorientation between those of the 1:1 and 2:1 boundaries, whose
structures can only be ...AB... and ...AAB... respectively. In both 1:1 and 2:1 boundaries
every B unit is sandwiched between A units. This is true of the second possibility for the 3:2
boundary, but not the first. Hence the sequence of units in the second possibility is continuous
with the sequences in neighbouring boundaries but the first possibility is not. The second
possibility is, indeed, found by direct calculation, as may be seen in figure 54. To obtain the
second sequence for the 3:2 boundary from the known 1:1 and 2: 1 sequences it is only necessary

to write
BA +BAA = BABAA or AB+AAB = ABAAB,

i.e. continuity is assured provided one writes both 1:1 and 2: 1 components beginning with the
same unit. Note that continuity of boundary structure results in the maximum possible separation
of secondary dislocations based on the appropriate favoured boundary reference structure.

The number, R, of non-equivalent periodic boundary structures that may be obtained from
m A units and z B units is given by

R=(m+n—1)!/m!n!.

For example, when m = 12 and n = 11 we obtain R = 58786. All of these structures lead to the
same macroscopic boundary misorientation. The significance of continuity of boundary structure
is that it is satisfied only by one of the R possibilities and that is the structure found by direct
calculation. We now give an example to show how to predict the structure of a very high X'
boundary using the principle of continuity of boundary structure. Consider the structure of
X = 1881 (10,10, 41),, 38.06°/[110] in aluminium. This boundary is composed of some mixture
of the above A and B units. The boundary is not centred and therefore the repeat sequence of
units fills one period of the boundary. Let the numbers of A and B units in one period be m and
respectively. The period vector undergoes the following decomposition:

1[41,41,20], = im[552], + }n[332],.

Solving this equation we find m = 11 and n = 9 (for which R = 8398). The structure of the
11:9 boundary must be continuous with the structures of 1:1 and 2:1 boundaries, which can
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only be ...AB... and ...AAB... respectively. Starting from the known 1:1 and 2:1 sequences
the 11:9 sequence is constructed by forming successively closer approximations:

2:14+1:1 =3:2,

i.e. AAB+AB = AABAB;
3:24+1:1=4:3,
ie. AABAB + AB = AABABAB;
4:3+4+1:1 = 5:4,
ie. AABABAB + AB = AABABABAB;
2(5:4)+1:1 = 11:9,
i.e. 2 (AABABABAB) + AB = AABABABABAABABABABAB.

Provided all boundaries in the misorientation range between two favoured boundaries are
composed of units from the favoured boundaries, it is possible to derive the unit representation
of any boundary in that misorientation range, by using the principle of continuity of boundary
structure. The unit representation provides, at least qualitatively, the atomic structure and stress
field of the boundary. While one cannot explicitly calculate the structure of every boundary in
the range 31.59 < 6 < 50.48°, to prove that all boundaries in this range are composed of A and
B units, the above calculations suggest no reason for believing otherwise. Furthermore, it is
shown in part III that all boundaries in this range certainly can be constructed from A and B
units. ‘
4.4. Boundaries in the misorientation range 0 < 0 < 31.59°

Table 2 lists the parameters of boundaries selected in this misorientation range. As may be
seen in column six of this table all of the calculated boundary structures are composed of two
units, A and C. The A units are the same as before and belong to the X = 27 (115), favoured
boundary. The C units belong to the ideal crystal. As § approaches zero the boundary plane
tends to (001) and the period vector tends to the [110] direction. The next favoured ‘ boundary’
is thus X' = 1 (001) and the appropriate primitive cell is bounded by 3[110] and 3[110]. A suitable
choice of C unit, which is bounded by these $(110) vectors in the (001) plane, is indicated in
figure 9 by broken lines. Since all of the calculated structures are composed of A and C units it
is reasonable to assume that all boundaries in this misorientation range are composed of these
units and therefore that continuity of boundary structure exists throughout the range. We
therefore present here only one of the calculated structures. Figures 104, b show the relaxed
structure and hydrostatic stress field map of X' = 129 (2, 2, 11),. Each period of the boundary is
composed of four A units and one C unit, shown by dashed lines. The unit representation of the
boundary structure is therefore |[AAAAC|. The period vector, }[11,11,4],, undergoes the

following decomposition: 1[11, 11,4], = £[5652], + 3[110],.
TABLE 2
boundary plane 6/deg z centred period vector structure
(001),/(001), 0 1 no 3[110], |C|
(1,1,13),/(, 1, 13), 12.42 171 yes 113, 13, 3], |CCCCA.CCCCA|
(117),/(A17), 22.84 51 yes 3773, |CA.CA|
(116),/(116), 26.53 19 no [331], [CAA|
2,2, 11),/(2, 2, 11), 28.84 129 no 311, 11, 4], |CAAAA|
(3,3,16),/(3, 3, 16), 29.70 137 no [883], |CAAAAAA|
(115),/(115), 31.59 27 yes 1[552], |A.A|

3-2
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20 A.P.SUTTON AND V.VITEK

The C units identified in figure 104 are a somewhat distorted form of the perfect C unit shown in
figure 9. The C unit distortion decreases as 6 approaches zero while, at the same time, the
distortion of A units increases. By distortion of a favoured boundary unit we mean only the
change in interatomic separation between the same atoms defining the unit in its ideal state,
i.e. addition or removal of atoms to the unit is not permissible. This distortion is regarded as

= & —-———4 A

[001]

+
+

1[110]

(a) A
+ A & + A A + A

+A+AA+A++A+AAA+++A+AA+A++A+AAA+++A+AA+A++A+AAA++
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Ficure 10. (a) Relaxed structure of X = 129 (2, 2, 11),, 28.48°/[110] boundary in aluminium. Two C units,
separated by one period of the boundary, are shown by broken lines. A pair of (115), and (T15), planes is
shown entering the boundary at one C unit and terminating at the next. (b) Corresponding hydrostatic
stress field map.

acceptable if the distortions of similar units in nearby non-favoured boundaries decrease smoothly
to zero as the misorientation of the corresponding favoured boundary is approached. The
distorted C units of figure 104 are not parts of units from another favoured boundary. Between
successive (115), and (115), terminations (shown by full lines in figure 104) there are four A units
so that the remainder of each period of the (2,2, 11); boundary can only be filled by a unit
characterized by [110]. Figure 104 also indicates that between successive alternations from
maximum compression to relative tension there are four A units.

It is consistent with figure 105 to regard C units as the cores of —3%[115]; d.s.c. dislocations
preserving the X = 27 (115), favoured boundary. In the range 0 < # < 22.84° minority units
are A type and it is then consistent with the stress field maps and Frank’s formula to regard A
units as the cores of [001] lattice dislocations preserving the (001) plane of the ideal crystal. The
2 = 51(117), (6 = 22.84°) boundary is where the (001) plane of the ideal crystal and the
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2 = 27 (115), boundary are equally suitable reference structures because the (117); boundary
is composed of an equal number of A and C units:

1[552], +$[110], = }[772],

where }[772], is half the period vector of this centred boundary. It is noted that the cores of
— %[ 115], dislocations contain C units while the cores of +3%[115], dislocations contain B units.
Thus, although the magnitudes of the Burgers vectors of these dislocations are the same, their
structures are different. This result may be rationalized by symmetry considerations. In general,
there is no symmetry operation of the holosymmetric point group of a symmetrical tilt boundary
that can generate an edge g.b.d. with Burgers vector — b from one with + b, if b is perpendicular
to the boundary plane and the dislocation line is parallel to the tilt axis. Therefore, in general,
there is no reason to expect the core structures of such dislocations to be identical. A full symmetry
analysis of equivalent g.b.d. core structures in tilt boundaries has been made by Sutton (1981).

5. [001] SYMMETRICAL TILT BOUNDARIES IN COPPER

Table 3 summarizes the parameters of boundaries selected for this study. For reasons of space,
only two of the calculated structures are shown here. The last column of table 3 shows the unit
representations of the calculated boundary structures. The boundary misorientations were
defined with respect to the (110) plane of the ideal crystal. Thus as 6 -0 the boundary planes
tend to (110) and the period vector tends to the [110] direction. Clearly, the (110) plane of the
ideal crystal is a favoured ‘boundary’ of this series. The appropriate primitive cell of the (110)
plane is bounded by [001] and £[110], and we call a unit of this plane A. Figure 11 shows a [001]
projection of the ideal crystal and an A unit is outlined by broken lines; it is characterized by the
vector $[110]. It can be shown that (££0),/[001] symmetrical tilt boundary is centred provided
hand £ are mixed odd and even. Equivalent atoms in adjacent units of centred [001] tilt
boundaries are relatively displaced by $[001] along the tilt axis.

TABLE 3
boundary plane 0/deg x v/(mJ/m?)  centred  period vector structure
(110),/(110), 0 1 0 no 1[T10], N
(540),/(450), 12.68 41 770 yes [450], |AAAB.AAAB|
(750),/(570), 18.92 37 980 no 1[570]; |AABAB|
(530),/(350), 28.07 17 1161 no 1[350], |ABB|
(210),/(120), 36.87 5 1194 yes [120], [B.B|

Figures 12a, b show the relaxed structure and hydrostatic stress field map of the 2 = 5 (210),
boundary. The coordinate system used throughout this [001] symmetrical tilt boundary study
is displayed in figure 124. Using the same potential for copper, Crocker & Faridi (1980) have also
obtained this boundary structure. We shall show that this is a favoured boundary. Because it is
centred its unit is characterized by 1[120],. The broken rectangles in figures 124, b indicate a
suitable choice of unit, which we call B, and the unit representation of this boundary is therefore
|B.B|. The dot signifies that equivalent atoms in the half periods are relatively displaced by
4[001] along the tilt axis. To accommodate the minimum misorientation from the ideal lattice
each B unit may be associated formally with a 3[110] lattice dislocation. Figures 134, b show
the relaxed structure and hydrostatic stress field map of the X' = 41 (540), boundary. This
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boundary is centred and each half period of the boundary contains three A units and one B unit,
shown by dashed lines. The decomposition of each half period vector is as follows:

3[450], = §[110]; +3[120],.
Full lines in figure 134 outline (220), and (220), planes that enter the boundary at a B unit and
terminate parallel to the boundary at the next B unit. This suggests that each B unit is located
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at the core of a $[110] lattice dislocation, which is consistent with Frank’s formula and figure 135
where each B unit, shown by broken lines, coincides with the transition from maximum com-
pression to relative tension in the boundary.

Asindicated in table 3 the 2' = 37 (750), and X' = 17 (530), boundaries are also composed of A
and B units and hence it is reasonable to assume that all boundaries in the range 0 < 6 < 36.87°
are composed of A and B units. I't follows that the 2 = 5 (210), boundary is favoured. With use

(a) 2

(b)

e e —
-— — - T ————— - - —_— -
- -— - - : “%l - - -—> -
- ~ . L - - ~
—_— —> - -

FiGure 13. (a) Relaxed structure of X = 41 (540),, 12.68°/[001] boundary in copper. Broken lines indicate a
B unit located at the terminations of (220), and (220), planes, shown by full lines. () Corresponding hydro-
static stress field map.

of the principle of continuity of boundary structure the unit representation of any boundary in
this range may be found. The 1:1 boundary is X' = 13 (320), for which 6 = 22.62°. Hence
boundaries in the range 0 < 6 < 22.62° are composed of more A than B units and therefore the
most appropriate reference structure is the (110) plane of the ideal crystal with the cores of
1[110] lattice dislocations located at B units. Boundaries in the range 22.62 < ¢ < 36.87° contain
more B than A units and itis then most appropriate to regard each A unitas the coreofa —$[210],
d.s.c. dislocation preserving the X = 5 (210), reference structure. Thus the scheme of favoured
and non-favoured boundaries, enunciated in §4 for [110] symmetrical tilt boundaries in
aluminium, is equally applicable to these [001] symmetrical tilt boundaries in copper.
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24 A.P.SUTTON AND V. VITEK

6. [117] SYMMETRICAL TILT BOUNDARIES IN ALUMINIUM

In the above studies of [110] and [001] symmetrical tilt boundaries it was found that the
boundary structure changed continuously with misorientation between two adjacent favoured
boundaries. In this section a discontinuous change in boundary structure between two favoured
boundaries is found. Near the discontinuity each boundary has two possible structures, differing
in their translation states parallel and perpendicular to the tilt axis. Such multiplicity of boundary
structures has been reported frequently in the literature (see for example Vitek ¢t al. 1980a).
Below, we suggest that the alternative structures of a boundary may be related to those of other
boundaries, nearby in the misorientation range, in the sense that they are composed of the same
fundamental structural elements. It is also shown that if a discontinuity in boundary structure
does occur between two adjacent favoured boundaries then it is possible that units of mechanically
unstable boundaries may exist in the intervening non-favoured boundaries.

In f.c.c. crystals (111) are three-fold inversion axes (3) and thus the structures of boundaries
with misorientations 6 and 120 —6 are equivalent. Therefore it is sufficient to consider mis-
orientations in the range 0 < 6 < 60°. The boundary plane, misorientation and corresponding
2 value for each boundary selected in this study are given in the first three columns of table 4.
The fourth column shows the rigid body translation along the tilt axis, 7;, of the lower grain with
respect to the upper grain in units of the lattice parameter, a. The translation 7 is measured
with respect to the state where (111) planes are continuous across the boundary and hence
—3y3 < T, < +375. The fifth column of table 4 lists the compact polyhedra that are present in
the relaxed structures: octahedra, tetrahedra and interlocked trigonal prisms. The period
vector, in the upper and lower grain coordinate systems, of each boundary is shown in the sixth
column, and the seventh column gives the unit representation of each boundary structure. The
structure of 2 = 3 (121) was calculated by Pond & Vitek (1977) who regarded it as a symmetrical
[101] tilt boundary. Their a and B structures correspond to the structures represented by |F|
and |G| respectively. The o structure was observed experimentally by Pond & Vitek (1977).

Centred [111] tilt boundaries have centering sites at 4[111] and 2[111] along the tilt axis.
Thus, if a centred [111] tilt boundary is favoured, with unit S, its structure is represented by
|S.S.S|. Each dot now signifies that equivalent atoms in adjacent S units are relatively displaced
by 4[111] along the tilt axis. The angle of misorientation is measured with respect to the (110)
plane of the ideal crystal, i.e. as 6 0 the boundary plane tends to (110) and the period vector
tends to the [112] direction. When viewed in projection along [111] the (110) plane of the ideal
crystal is centred, as shown in figure 14. The appropriate primitive cell of this ‘boundary’ is
therefore bounded by [111] and §[112]. The broken lines in figure 14 outline a suitable unit of
this boundary, which we call A. This unit is characterized by §[112].

Reference to table 4 indicates that there are two groups of boundary structures, defined in
overlapping misorientation ranges. The first group is characterized by 7, ~ 0 and the funda-
mental elements appearing in those boundaries are A and B* units. Boundaries in the second
group are characterized by 0.235 < 7 < 0.283 and are composed of C, D, E and F units.
Furthermore, boundaries in the first group contain octahedra and tetrahedra, whereas in the
second group they contain interlocked trigonal prisms. The X' = 3 (121), |G| structure is excep-
tional since it belongs to neither group. No boundaries of the second group were found to be
mechanically stable in the range 0 < 0 < 17.90° and also no boundaries of the first group were
found tobestable for 38.21 < 6 < 60°. But mechanicallystablestructures belonging to both groups
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26 A.P.SUTTON AND V. VITEK

were found in the range 17.90 < 6 < 38.21°. The boundaries X' = 21 (451); and X = 13 (341),
have misorientations in the latter range and two stable structures, one for each group, were
found for them. It will be shown below that the energy, v,, of boundaries belonging to the second
group is a continuous function of misorientation. Since boundaries of the first group are all
composed of the same units the energy, v,, of these boundaries is also a continuous function of
misorientation. The discontinuous change in boundary structure occurs when y,(0) = v,(6)

3[12]

y

§112]

Ficure 14. [117] Projection of ideal f.c.c. crystal. Broken lines outline an A unit.

0] nlo) #(0)

» (/deg
el

b ——— ——— —

Ficure 15. Schematic illustration of the energy against misorientation relations for the two groups of boundary
structures. A discontinuous change in boundary structure occurs at ,.

and this occurs at 6 = 6, where 17.90 < 6, < 38.21°. This isillustrated schematically in figure 15.
Although the energies of the boundaries cannot be calculated reliably with the cut-off radius
used, the ranges in which the two groups of boundaries are stable or unstable concur with the
schematic forms of these curves. We shall now present some of the calculated boundary structures
to illustrate and substantiate the above points, and then discuss the implications of these results.

Figures 164, bshow the relaxed structure and hydrostatic stress field of £ = 21 (451), belonging
to the first group. The coordinate system used throughout this study of [111] symmetrical tilt
boundaries is displayed in figure 164. In each period of the boundary there are two A units,
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shown by full lines, and one B* unit, shown by broken lines. A pair of (220); and (220), planes
is shown (figure 164) entering and terminating parallel to the boundary at a B* unit. This
suggests that each B* unit is located at the core of a [110] lattice dislocation, which is consistent
with the hydrostatic stress field map, figure 165. Octahedra and tetrahedra may be seen in the
regions of strained crystal between the dislocation cores. The period vector of this boundary is
3[213], and the vector characterizing a B* unit may be deduced as follows:

3[213]; - §[112], = §[415],,

+ A + A
(b

- — - - — - - — - - — - - —
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Ficure 16. (a) Relaxed structure of X' = 21 (451),, 21.79°/[111] boundary in aluminium, belonging to the first
group. Two A units and one B* unit, composing one period of the boundary, are shown by full and broken
lines respectively. A pair of (220), and (220), planes is shown entering and terminating in the boundary at
B* units. (b) Corresponding hydrostatic stress field map.

where 2[112], characterizes two A units in each period. §[415], characterizes a unit of X' = 7
(231), (which is a centred boundary). Following the scheme developed for [110] and [001]
symmetrical tilt boundaries, one would infer that X = 7 (231), is favoured and composed of a
contiguous sequence of B* units. However, no such structure of this boundary is mechanically
stable and this is the reason for the use of the asterisk. Therefore B* units are not units of the next
favoured boundary. The occurrence of B* units in the first group of boundaries must, therefore,
be stabilized by A units belonging to the ideal crystal. In other words, the tendency to form
regions of relatively undistorted ideal crystal (i.e. A units) is sufficiently strong that the con-
comitant B* units are stabilized. However, it is anticipated that as the ratio of the number of A
units to the number of B* units decreases the boundary structures become less stable. This would
indicate that the energy of these boundaries increases with 6, as shown by y, () in figure 15.
4-2
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28 A.P.SUTTON AND V. VITEK

The alternative, mechanically stable structure of ' = 21 (451), belongs to the second group
of boundaries, and the relaxed structure and hydrostatic stress field map of this boundary are
shown in figures 174, 5. Interlocked trigonal prisms are indicated by overlapping triangles in
figure 17a. Each [111] period of an i.t.p. consists of two close-packed triangular clusters, which
are shown as overlapping triangles. The triangular clusters are separated by approximately
1[111]. The normals of the triangular clusters are mutually inclined and they are also inclined
to the [111] axis. The perfection of the clusters increases as # approaches 60°, where the maximum
distortion of the first nearest neighbour separation is ca. 1.5 9. This suggests that the energies of
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Ficure 17. (a) Relaxed structure of £ = 21 (451),, 21.79°/[111] boundary in aluminium, belonging to the second
group. Overlapping triangles indicate interlocked trigonal prisms. (b) Corresponding hydrostatic stress field
map.

these boundaries decrease as 6 increases, as shown by y,(0) in figure 15. A unit of this boundary
is called C and it is characterized by £[213],. A suitable unit is the ‘kite-’shaped configuration
filling each period of the boundary, similar to a Bishop & Chalmers (1968) structural unit.
A pair of (220) planes terminates at each C unit and thus each C unit may be regarded as the
core of a $[110] lattice dislocation. This is consistent with figure 175 where (220) plane termi-
nations coincide with the transition from maximum compression to relative tension in each
period. We believe this boundary structure is favoured, although we have not made explicit
calculations to confirm that boundaries nearby in the misorientation range contain G units.
The reason for this belief will be explained below.

Similar periodic kite configurations were found in the ' = 13, 7 and 3 boundary structures,
belonging to the second group. Figures 18 and 19 show the relaxed structures of ¥ = 7 (231),
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GRAIN BOUNDARY STRUCTURE IN METALS. I 29

and X' = 3 (121),. The boundary X' = 7 (231), is centred and hence each kite (shown by broken
lines) occupies one third of a period of the boundary. The overlapping triangles again outline
i.t.ps. In figure 19 it is seen that X' = 8 (121), consists of a contiguous sequence of interlocked
trigonal prisms.

X ] X (o]
°© O o b [¢] °© m] X (o] [m]
[m] X (o] ] X o O
X (o] ] X o ] X
X o [m] X (o] ] X
o [m] X o ] X o
[m] X o m] X [m]
] X o (o] a ] X (o] o ] N
X
- X (o]
o ° o B x o P o
[m] X (e] X Q [w]
' 1
v + A +* A v
\\ - A
N v + + v \7”* + AV
+ A v + v +
+ A v + A v +
A + 4 A v + o a v
a Vv v + + A + A
v
+ A v v + A v +

Ficurk 18. Relaxed structure of £ = 7 (231),, 38.21°/[117] boundary in aluminium.
An E unit is shown on the right.
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Ficure 19. Relaxed structure of £ = 3 (121),, 60°/[111] boundary in aluminium,
An F unit is shown on the right.

The X' = 19 (352), and X; = (473), relaxed structures are composed of readily identifiable
units from X = 7(231); and X = 3 (121),. The latter two boundaries are therefore favoured
and we call their units E and F respectively. As an example, figures 204, b show the relaxed
structure and hydrostatic stress field map of X' = 37 (473),. This boundary is centred and each
third of a period is composed of two F units, shown by full lines, and one E unit, shown by broken
lines. Thus the decomposition of each third of a period vector of this £ = 37 boundary is as
follows: 810, 1, 1], = 415, + {1011,

In figure 205, F units are located at the transition from maximum compression to relative tension
in each third of a period of the boundary. An outlined pair of (242), and (422), planes is seen
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30 A.P.SUTTON AND V. VITEK

entering the boundary at an F unit and terminating at the next F unit and hence, in the most
appropriate g.b.d. description, F units correspond to the cores of —£[121], d.s.c. dislocations of
the X' = 3 coincidence system preserving the (121); boundary.

The structures of X' = 21 (451); and 2 = 13 (341), boundaries belonging to the second group
are closely analogous to those of &' = 7 (231), and 2 = 3 (121), since all four boundary structures
consist of periodic arrays of contiguous ‘kites’ and they have very similar translation states. The
main difference between these four boundary structuresis simply the length of the kites composing
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Ficure 20. (a) Relaxed structure of X' = 37 (473),, 50.57°/[111] boundary in aluminium. Two F units and one
E unit, composing one third of a period of the boundary, are shown by full and broken lines respectively.
(242), and (422), planes are shown entering and terminating in the boundary at F units. (6) Corresponding
hydrostatic stress field map.

each boundary. Therefore, in a precisely analogous manner to the mixing of E and F units to
produce the structures of all boundaries in the range 38.21 < 6 < 60°, D and E units can be
mixed to produce the structures of all boundaries in the range 27.80 < ¢ < 38.21°. In that case
the X' = 21 (451), and X = 13 (341), structures of the second group are favoured. Furthermore,
it also implies that the energy of all boundaries of the second group, y,(6), is a continuous function
of 6 and independent of y, () since there are no units common to both groups.

The boundary structure changes continuously throughout the misorientation range between
two adjacent favoured boundaries only if all the intervening non-favoured boundaries are
composed of units from those favoured boundaries. In the present study, the first two adjacent
favoured boundaries are ‘X = 1(110),’ of the ideal crystal and one of the favoured boundaries
of the second group, i.e. X' = 21 (451); or X' = 13 (341), or X = 7(231),. But these adjacent
favoured boundaries have highly incompatible translation states and therefore their units
cannot co-exist in intervening non-favoured boundaries. Instead, two independent groups of
boundaries are formed in which non-favoured boundaries are composed of units that have
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compatible translation states, but no unit is common to both groups. At some misorientation
0 = 0, the group of boundaries possessing the lowest energy changes, and then a discontinuous
change in boundary structure with misorientation occurs. However the structure of all boundaries
at 0 # 0, is uniquely prescribed; it is only at 6 = 6, that two energetically degenerate, non-
equivalent, possible structures exist. Thus, provided the units, composing the boundaries on
either side of the discontinuity, are known the unit representation of any boundary at 6 # 6,
can be deduced in the manner shown in §4.3. We may speculate that similar discontinuities will
arise between other adjacent favoured boundaries whose translation states are incompatible.
It is noted that when such a discontinuity occurs a total of four boundary units appear in non-
favoured boundaries between the two adjacent favoured boundaries. Only two of those four
units belong to necessarily mechanically stable favoured boundary structures. A contiguous
sequence of either of the other two units may produce a boundary structure that is not mechani-
cally stable, as for the above B* units. Such units may be said to belong to a pseudo-favoured
boundary because they are one of the fundamental structural elements in non-favoured bound-
aries just like normal favoured boundary units, but the pseudo-favoured boundary is unstable.
Discontinuous changes in boundary structure are further discussed in part ITI.

7. DiscussioN

A principal result of this paper is that certain boundary units are the fundamental structural
elements of other boundaries. These fundamental structural elements cannot be broken down
into units of any other boundaries. A boundary that is mechanically stable and composed of a
contiguous sequence of only one type of fundamental structural element is favoured. All other
boundaries are non-favoured. Since the fundamental structural elements of a favoured boundary
are all the same there are no incompatibilities arising from local misorientation differences
between adjacent units. A favoured boundary is therefore the most appropriate reference
structure for defining the secondary dislocation content of non-favoured boundaries, in which
most of the fundamental structural elements are units of that favoured boundary. Every unit of
a favoured boundary may also be regarded as the core of a lattice dislocation. Because no two
favoured boundary units are the same the lattice dislocation core structure is different in two
favoured boundaries, even though the Burgers vectors may be the same; for example, [001]
lattice dislocation cores in the favoured X' = 27 (115), and 2 = 11 (113), [110] symmetrical tilt
boundaries are A and B units respectively. However, because the lattice dislocations composing
a high angle boundary are so closely spaced it may be prefereable to describe a favoured sym-
metrical tilt boundary as the invariant plane of a simple shear and therefore dislocation free.

Non-favoured boundaries are composed of specific arrangements of two different boundary
units. Continuity of boundary structure holds throughout the misorientation range between two
adjacent favoured boundaries, provided all the intervening boundaries are composed of units
from only those two favoured boundaries. The unit representation of any boundary in this range
may then be deduced unambiguously, as shown in §4.3. The unit representation supplies, at
least qualitatively, the atomic structure and the stress field of the boundary. Fields that are
characteristic of edge dislocations exist in all the stress field maps of the relaxed non-favoured
boundary structures. The source of these fields may be regarded as the incompatibility normal
to the boundary between adjacent units of different types, caused by the local misorientation
difference across them. It is remarkable that the boundary units composing non-favoured
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32 A.P.SUTTON AND V. VITEK

boundaries tend to relax to their respective ideal misorientations, even though they may differ
from the average misorientation by 20-30°. Local variations in the boundary misorientation are
brought about by local bending of planes parallel to the favoured boundaries. This local plane
bending is, in turn, effected by coalescence of planes parallel to the macroscopic boundary
plane.t For example, consider 2 = 89 (229),, 34.89°/[110] in aluminium, shown in figure 4a.
Four (4,4, 18), planes and four (4,4, 18), planes, in the upper and lower grains respectively,
have coalesced in each period of the boundary. The result of this coalescence of planes, and the
relative translation of the two grains, is the formation of three A units and one B unit in each
boundary period. However, plane coalescence at a boundary does not imply that the boundary
is necessarily non-favoured. For example, &' = 5 (210),, 36.87°/[001] in copper is favoured but
two (420), planes have coalesced in each boundary period. The most satisfactory method to
demonstrate that a boundary is favoured is to examine the atomic structure and stress fields of
neighbouring boundaries in the misorientation range. If the boundary is favoured then different
boundary units are introduced at higher and lower angles of misorientation, which do not exist
in the favoured boundary structure. Otherwise, the boundary is non-favoured.

The Burgers vectors of secondary intrinsic dislocation, based on favoured boundary reference
structures, were not usually primitive d.s.c. vectors. On the other hand, in all cases the Burgers
vector was the smallest d.s.c. vector, perpendicular to the corresponding favoured boundary
plane, that did not require a step associated with the dislocation core. The absence of steps in the
boundary is vital to the description of non-favoured boundaries in terms of favoured boundary
units. This point is also discussed in part IT where a general formula is presented for the Burgers
vector of intrinsic dislocations preserving a favoured tilt boundary.

In tilt boundaries the core structures of positive and negative secondary intrinsic dislocations
with Burgers vectors of the same magnitudes, based on favoured boundary reference structures,
are not, in general, identical because they contain different boundary units. For example, in §4
it was shown that ' = 11 (113), units are located at the cores of +%[115], d.s.c. dislocations,
preserving X = 27 (115),, whereas X' = 1 (001) ideal crystal units are located at the cores of
—o[115], dislocations. The implications of this distinction for grain boundary properties are
discussed in part III.

Discontinuous changes in boundary structure always occur at favoured boundary orientations,
because the units that are introduced into boundaries at + 46 are different. In §6 it was shown
that discontinuous changes in boundary structure (henceforth referred to as discontinuities) can
also occur between two favoured boundaries. These discontinuities may be expected when the
translation states of two adjacent favoured boundaries are incompatible in the sense that their
units cannot co-exist in a boundary in equilibrium. There are then two independent series of
boundary structures: one series emanating from each favoured boundary. Within each series the
boundary structure changes continuously with misorientation. Thus the unit representation of
any boundary in either series may be found, as before, once the two units composing boundaries
in the series are known. One of these units belongs to the favoured boundary from which the
series emanates. The other unit may belong to a pseudo-favoured boundary, i.e. a boundary that
is not mechanically stable, but nevertheless its units are fundamental structural elements of
non-favoured boundaries. The discontinuity occurs at the misorientation, 6;, where the energies
of the two series are equal, as shown schematically in figure 15. In the interval 6, + 86 the
minimum energy series changes and thus the equilibrium boundary structure transforms. At

1 The occurrence of plane coalescence at grain boundaries has also been discussed by Crocker & Faridi (1980).
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misorientations near 6; both series of boundary structures may still be mechanically stable. In
that case a boundary near 6, has two mechanically stable structures that differ in their translation
state and their energy. Thus, atleast near a discontinuity, some of the alternative, non-equivalent,
mechanically stable structures of boundaries may be related, in that they are members of
continuous series of boundary structures.

Owing to the neglect of atomic vibrations in these atomistic calculations the bicrystal tempera-
ture is effectively 0 K. The boundary energy is therefore the internal energy of the system relative
to the ideal crystal. For the same reason that the internal energies, y,(0) and y,(6), of the two
series of boundaries represented in figure 15, are continuous, independent functions of 6, we may
assume that the entropies S;(6) and S,(6) of the two series are also continuous, independent
functions. Hence the free energies of each group of boundaries are also continuous and inde-
pendent functions of misorientation. In general, the misorientation, 6;, at which their free
energies are equal will vary with temperature because $;(6) # Sy(6). In other words, the inter-
section of the two free energy curves will occur at a given boundary misorientation at a certain
temperature, and the structure of that boundary will undergo a transformation at that tem-
perature. The possibility of such boundary structure transformations has been discussed by
Hart (1972).

I't is now possible to provide answers to some of the questions posed in the introduction, at
least in the context of symmetrical tilt boundaries.

1. Favoured boundaries are not always associated with the lowest available values of Z.
For example, X' = 27 (115), and 2 = 11 (113), are favoured [110] symmetrical tilt boundaries in
aluminium but X' = 9 (114), is not. The present calculations do not suggest that all boundaries
with the same value of X' (or I') are favoured. In part IT it is shown that, in general, they are not
all favoured. Similarly, the present calculations do not suggest that the same boundaries are
favoured in metals with the same crystal structure. By comparing the structures of [001] sym-
metrical tilt boundaries in copper (§5) with those in aluminium (Smith et al. 1977) itis seen that
grain boundary structure is dependent on the interatomic potential. Therefore variation in
boundaries favoured in different metals with the same crystal structure is expected. On the
other hand, it will be shown in part III that the boundaries favoured are not governed solely by
considerations of energetics: in certain circumstances the occurrence of centred boundaries
imposes ‘selection rules’ on which favoured boundaries may be adjacent. Cusps in the energy
against misorientation curve, y(0), always occur at favoured boundaries since this is governed
by long-range elastic fields (Read & Shockley 1950). However, the cusp depths may be relatively
small and therefore indetectable. A more detailed discussion of y(f) and other boundary
properties is deferred to part III.

2. Non-favoured boundaries are composed of specific sequences of other boundary units. If
the boundary structure changes continuously between two adjacent favoured boundaries, then
all the intervening non-favoured boundaries are composed of units from the favoured boundaries.
The numbers and sequence of favoured boundary units composing any non-favoured boundary
are then unique, and may be determined by the methods given in §4.8. To describe the structure
of non-favoured boundaries as ‘arbitrary’ or ‘disordered’ is therefore misguided. Consider a
discontinuity between two adjacent favoured boundaries. The structures of all intervening non-
favoured boundaries, except at the discontinuity, are again unique and may be determined once
the constituent boundary units are known. At the discontinuity two non-equivalent structures
are energetically degenerate, and then the boundary structure is not unique.

5 Vol. 309. A
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The hydrostatic stress field maps show that intrinsic g.b.ds are distinct and localized at all
misorientations between two favoured boundaries. This maintains even at 1: 1 boundaries where
the density of intrinsic dislocations, based on the appropriate favoured boundary reference
structures, is highest. The cores of those intrinsic secondary dislocations are always separated
by at least one boundary unit: ‘core overlap’ does not occur.

3. In any non-favoured boundary, g.b.d. stress field sources exist at the intermittences of the
sequence of majority elemental units caused by minority elemental units. The minority units
may therefore be regarded as the cores of secondary intrinsic g.b.ds preserving the boundary
composed of a continuous sequence of the majority units. As the misorientation from a favoured
boundary increases, the ‘majority’ and ‘ minority’ units are interchanged at the 1: 1 boundary.
At the 1:1 boundary both g.b.d. descriptions are equally appropriate, and the transition from
one description to the other takes place. The change in atomic structure with boundary mis-
orientation is accomplished at intrinsic g.b.d. cores, which are units from the next favoured
boundary if the boundary structure changes in a continuous manner. When a discontinuity
occurs between two adjacent favoured boundaries, units of the ‘next’ favoured boundary are
introduced only at misorientations beyond the discontinuity. The units introduced before the
discontinuity belong to another boundary structure, which may or may not be mechanically
stable.

4. Any property that depends only on the structure of the boundary core can be used to
determine favoured boundaries. Thus the variation of the grain boundary diffusion coefficient
with misorientation is suitable, but the grain boundary energy is not. This is because the
boundary structure changes discontinuously at favoured boundary orientations, but the long-
range field of the boundary behaves similarly at both favoured boundary and short-period non-
favoured boundary orientations. A full discussion is again deferred to part III.

In this final section we shall discuss the results of some earlier atomistic studies of symmetrical
tilt boundaries in the light of this work. Most previous atomistic studies have treated only short-
period boundaries. Hasson et al. (1972) calculated the structures of several symmetrical [001]
tilt boundaries using a Morse potential constructed for aluminium. Each period of their
2 =173(11, 5, 0), boundary structure is composed of four units from their 2' = 5 (210), boundary
and one unit from their X' = 5 (310), boundary. Vitek ¢ al. (19805) calculated the structure
of several [001] and [110] symmetrical tilt boundaries using a variety of potentials constructed
for b.c.c. metals. One example from this work is the decomposition of each half period of the
(centred) X' = 11(113), boundary into one unit from the (centred) X = 9 (114), favoured
boundary and one unit from the ‘reflexion twin’ structure of theX = 3 (112), boundary:

1[332], = [221], +3[111],.

The broken squares in figure 8 of that paper corresponds to one unit of the reflexion twin shown
in figure 8.12a of Christian (1975). An interesting case arose in Smith ez al. (1977) who calculated
the structure of several [001] symmetrical tilt boundaries in aluminium using the same potential
asin the present work. Our discussion is confined to the 2’ = 5 (210), and 2’ = 5 (310), boundaries.
which are favoured, and the X = 29 (520); and X = 29 (730), boundaries which are non-
favoured and lie in the misorientation range between the X' = 5 boundaries. Smith et al. (1977)
show that the (520); boundary is composed of a 1: 1 mixture of units from the 2" = 5 boundaries.
It is important to note that the translation states of the two X' = 5 boundaries are highly com-
patible. One would therefore expect continuity of boundary structure to occur throughout the
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misorientation range between them. In that case the (730), boundary should contain two (210)
units and one (310); unit, as indicated by the decomposition of its period vector:

3[370], = £[120], + $[130],.

Smith et al. (1977) correctly point out that their (730), boundary structure cannot be described
in this way. Indeed the translation state of their (730), structure prohibits the existence of units
from the X' = 5 favoured boundaries. The present authors have recalculated the structure of the
(730), boundary, using the same potential. In addition to the relaxed structure, given by Smith
et al., we found a relaxed stable structure conforming to the above description in terms of X' = 5,
as expected. The calculated energy of the latter structure is 26 9 less than that of the structure
found by Smith ez al., although not very much credence may be attached to the calculated
energies. This example illustrates the capacity of the present model to describe the structures of
high-angle grain boundaries.

We are very grateful to Professor J. W. Christian, F.R.S., for many helpful comments and
enlightenment about the multiplicity of dislocation descriptions of interfaces.

A useful discussion was also held with Dr R. C.Pond of the University of Liverpool. This
research was supported by the National Science Foundation, MRL Program, contract no.
DMR79-23647.
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